Abstract and Itinerary:
Temporal and Transitional Spaces, Architecture and Mobility

Background:
Historically, nomadic cultures used lightweight, flexible, and portable materials such as tepees, animal hides, and thin-wood components to quickly assemble and disassemble communal and private, temporary and transitional spaces. Advancements in technology since 1950 have enhanced the durability and strength of these spaces using plastic and membrane construction methods.

Global events such as the World Cup, The Olympics all require multiple transitional and temporary spaces that support human activities in a safe, sustainable way. Global disasters mandate that transitional spaces be quickly assembled with consideration of local, cultural, and economic needs. From airports to temporary event structures, plastic and membrane construction methods continue to set precedents for how architecture can inspire, repair, and support humanity. By studying precedents and collaborating with colleagues in various disciplines, we can develop ideas that establish new techniques, models, and methods that respond to evolving demands for temporary and transitional spaces.

Bueno I, 1981, The Hog Terminal, a pioneering tensile-roofed structure in Sinhale, Saudi Arabia, designed by Sinhale, Owings & Merrill (SOM) won the 2010 AAA Twenty-Five Year Award for outstanding performance. This 2.8 million square foot transitional space accommodates 2.4 million Islamic pilgrims on their way to Mecca for two months of the year. A large array of roof-membrane cones, open at the top, naturally ventilate and cool the terminal amidst the burning desert climate while saving energy; because of its temporary use, air conditioning was unrealistic. In a recent interview, John A. Cusick, Senior Structural Engineer on the Hog project offered to me that membrane construction methods of fabric are underutilized in contemporary practice. In search for structural efficiency, Richard Buckler asked the question “How much does your building weigh?” and developed geodesic and tensional principles that have influenced membrane construction. With the support of the SOM Foundation, I will travel, research, and analyze the thematic, spatial, structural, and spatial methods of architectural design that use Geodesic Typologies and/or Membrane Construction Methods. With that knowledge and experience, I will collaborate with diverse professionals to design transitional and temporary spaces for communities in need and events like the 2014 World Cup, in Brazil.

Research + Analysis:
From large multinational events to emergency response shelters, membrane structures make up only a small sector of current architecture and meet exploration, analysis, and new application. I propose to research history, recently completed, and current projects that implement membrane construction methods and/or geodesic typologies. I will travel to diverse locations to investigate vernacular, historic, and contemporary transitional spaces to establish new standards in architecture. For example, The Eden Project in Cornwall, England, by Grimshaw Architects, combines geodesic typologies with membrane construction methods into an organic and flexible form. John Haddad’s Church Mobile Art Pavilion is an example of temporary transitional art space that uses membrane construction methods. I will develop a qualitative analysis with writings, sketches, and photographs of the architectural details and spaces. I have contacted SOM, Birdair, Knapps Helbing, Foster and Partners, and FTL Design and Engineering Studio, all firms involved in the design and construction of the architecture I will be researching. They are willing to support my project, providing interviews and drawings for publication and reference. I have also contacted several other firms and anticipate their response. Throughout my research, I will be writing articles for FTL Architecture Magazine, organizing data collected for later publication.

Stuttgart, Germany will be where I finalize my research and analysis. German architects and engineers such as Frei Otto have and continue to significantly contribute to the knowledge base of membrane structures. A large majority of the contemporary and historic structures I wish to study are in Germany. I will consult with Knapps Helbing and Julian Lienard, co-founders of Plastics + Membranes Construction Manual (to be released August 2011). Mr. Lienard has offered me a workspace and access to form-finding software. The combination of geodesic technology with plastic and membrane construction methods will be used technically, spatially, and structurally to develop ideas for application. Evaluating my research information from previous months, I will compare and contrast projects, and consider their programmatic and environmental context and their application as transitional and temporary spaces in preparation for publication and application.

Application:
I will collaborate with Paul Casas, one of the finalists for the “2007” Buckminster Fuller Challenge Award, to produce a Corporate Social Responsibility Proposal for the 2014 World Cup, in Brazil. I had the privilege of living in Brazil for a year, which allowed me to become fluent in Portuguese and explore the diverse cultures. I wish to contribute to Brazil’s up-and-coming World Cup event, using the skill I acquire. Conferring with Mr. Casson and using my research and analysis, I will develop a design concept of temporary and transitional spaces to be used in each city, by a corporate sponsor. With multiple games in 12 cities over 30 days, transitional and temporary structures are idealized to accommodate their respective, reconfigurable, and re-usable design. A result of this proposal would be that local workers would be trained in these new building methods. After the event, the structures will be donated to non-profit organizations such as schools, wildlife preservers, and other non-profits in Brazil, to be used for disaster relief shelters and other purposes. The final proposal will be presented to a corporate sponsor that we are currently investigating, for approval and funding.

Architectural path:
As an student, I developed a nomadic lifestyle, traveling and experiencing architecture. My instructions encouraged me to visit significant buildings and places, nationally and internationally, initiating a path of discovery, which I thoughtfully applied to my experience. Temporary and transitional spaces along with membrane construction methods were central to my education and provided a focus for my architectural inquiries. There is no greater lesson than learning from master works and practicing professionals; architecture is a journey of lifelong learning and the reflection of accumulated knowledge and experience. Consulting with diverse professionals, I endeavor to analyze architecture, concepts, models, and prototypes that integrate membrane and geodesic technologies (externally and internally). I am interested in performing and applying research, collaborating with engineers, clients, architects, and attendees to create an environmentally, resilient, and re- transportable structures. Transient and temporary architecture may be more durable, flexible, and improvable. Therefore, they deserve special attention and focus. Development. With the help of the Skidmore, Owings & Merrill Foundation, I intend to make the spaces I travel, my school, office, and home, by “living architecture” and contributing to the global community.

Itinerary:
USA:
- The Smithsonian Institution (2007), Washington, DC, Foster and Partners, SmithGroup Inc.
- UN Interiors Canary (2009), New York, New York, HXW International, FL
- The Central Park (2011), San Clemente, California, Michael Madison Architects
- Canbria Snow Bent (1998), Traveling Performance, FL

Japan:
- Sheenchen East Huagu Water Park (2009), Sheenchen, Japan, Togo Kiyono Co. Birdair
- Kametora Domae (1997), Kametora, Japan, Birdair
- Lounge Faculty, Edo Tokyo Museum (1995), Tokyo, Japan, Highte
- Panasonic Building (1992), Osaka, Japan, Kecio Satokata, Togo Kiyono Co. Birdair
- Popy Church (1998), Masalue, Gifu, Japan, Shengo Ban

China:
- Expo Boulevard Shanghai (2010), Shanghai, China, Knapps Helbing, SDA Design
- Nongmin Shanghai Pavilion 2010 Expo, Shanghai, China, Knapps Helbing, Hang & HS
- Beijing Olympic Water Cube (2008), Beijing, China, PTW Architects
- Beijing National Stadium (2008), Beijing, China, Herzog & de Meuron

Saudi Arabia:
Haji Terejed, Jeddah Int Airport, Jeddah, Saudi Arabia (1981) SOM/Geiger, Berdar, Birdair
- Ministry Of Ummal And Rural Affairs (1980), Riyadh, Saudi Arabia, FTL
- King Fahd Stadium (1986), Riyadh, Saudi Arabia, Ian Fraser, John Roberts & Partners, Geiger Berdar

South Africa:
- Green Point Stadium, Cape Town Stadium (2010), Cape Town, GMP, Birdair, Louis Kord/Park Architects
- Soccer City Stadium (2010), Johannesburg, Birdair, Beigencentral Umushe & Partners
- Durban Stadium (2010), Durban, GMP, Schlaich Bergermann & Partners, Birdair
- Nelson Mandela Bay Stadium (2010), Port Elizabeth, Architectural Design Assess - Durand & Bennewies, Birdair

UK:
- Wemblele Centre Court Retractable Roof (2009), London, UK, Highte, Tendon Group
- Ireland Revenue Centre Ernst Stappyl (1994), Nottingham, UK, Highte, Architects
- SAPA Headquaters Ernst Stappyl (Fifliome 1984), UK, Highte, Architects
- Daso 1, Brandon House Hotel (2007), New Ross, UK, Highte, Limen
- Schlaichberger Centre Research Centre (1995), Cambridge, UK, Highte, Architects, Arup
- Millaneome Dome (1999), London, UK, Richard Rogers Partnership, Buss Hoppall, Birdair
- Eden Centre (2001), Cornwall, UK, GMP, Birdair and Partners, ARUP
- Dynamic Earth Centre (1999), Edinburgh, UK, Highte, Architects

France:
- The Pompiere-Nette Museum (2010), Nantes, France, Shengo Ban, Leen de Coninques
- Nageur Legeandre Arche (1990), Paris, France, Highte, John Otto von Spenst, Arup

Germany:
- Gottlieb Dander Stadium (1993), Stuttgart, Germany, Highte, Siegel & Partner, Schlaich Bergerman & Partner
- Stuttgart Main Station (under construction), Stuttgart, Germany, Ingenheiser Ovonder Architecten
- Driifke Arena (2005), Munich, Germany, Highte and Driifke, Ingenheiser
- Munich Olympic Stadium (1971), Munich, Germany, Fute Otto
- Munich Airport (1999), Munich, Germany, Highte, Murphy John
- Oskroberle U-Bahn Entrance Thimmenenwer (1990), Munich, Germany, Highte, Stadenwerk
- Ice Skating Rink, Munich, Germany (1985), Kurt Ackerman & Partner, Schlaich Bergerman & Partner
- Badklaaesamens Lesnen Pool (2004), Bad Klkleren, Germany, Highte, Dave & Shiedow
- Central Blu Stadium (2004), Deggendorf, Germany, Highte, Ing. Bue Hermeng, Schmauliden
- Hermes Underworks Expo 2000 Dansion, Germany, Highte, Herzog & de Meuron
- ZDF Television Centre (1991), Mainz, Germany, Highte, Allen Paimer & Partners
- Wolfgace Meyere Sportpeng Stadium (1994), Hamburg, Germany, Highte, Muller & Werner Partner
- Dresen Main Station (2004), Dresden, Germany, Foster and Partners, Hoppall
- The Senci Centre (2004), Berlin, Germany, Murphy John, Arup, Birdair
- Dept: Stone Park and Clépenau (2005), Cologne, Germany, Rezzou Foure, Knappe Helbag
Brittlebush: Design + Build
Arizona: A Sonoran desert dwelling

Situated in the Sonoran Desert, the most bio-diverse desert in North America, Brittlebush is named after a vital plant in the desert. The brittlebush plant is known as the nurse plant of the desert because it is common that all the other plants set root underneath its leaves, protected from the harsh environment. The design intent behind this project was to emulate the metaphor of the brittlebush’s open and gentle protection combined with the idea of a symbiotic relationship between the inhabitants of the desert, including the dwelling and dweller. The desert is limited in resources and yet the Phoenix Metropolitan area grew to 4.1 million by 2010. Brittlebush is an experiment in materials asking its inhabitants to question their boundaries between themselves and nature. What does it mean to dwell in this growing mechanized civilization and yet remain close to nature?

The desert dwelling as a design + build educational path was a rare opportunity to construct an architectural idea unique to my interests and sensibilities. I was the client, architect, and builder. I sought to find solutions to the contradictory aspects among these roles. In this two-year project the architectural process began to reveal some of its nuances and challenges. Resources, cost, and timing are all critical elements that need to be balanced in any project to create functionally and formally, spatial quality. The site and design had to be approved by the school administration, which required an ecologically conscious construction plan that minimized the impact on the desert and remained within the budget limit of $2000.

The construction plan was to build outward from within by using the existing hardscape as the construction staging site to prevent any unnecessary damage to the surrounding vegetation. This required the builder to keep a clean and organized building site. All materials were transported to the site by foot, wheelbarrow, or zipline.

A: View across the wash to the northeast
B: View from inside the wash to the northeast
C: Existing hardscape looking to the northwest
Brittlebush: Design + Build

Thinning and folding rammed-earth walls

The design integrates a fabric roof-membrane, 3” x 3” steel-angle, and rammed-earth into an open-air shade pavilion with a patio, bed, and fireplace. Approximately 90% of the steel in weight was recycled from the school scrap yard. The earth and crushed granite were collected from another site on the school property, as a remediation project keeping a symbiotic relationship with the desert. Commonly rammed-earth walls are roughly 16” thick, to provide structural support. However, due to the dynamic structural needs of the roof-membrane, rammed-earth acts as deadweight against uplift in high winds, as the steel provides an integral armature for balancing the tensions of the roof-membrane. This allowed me to propose a thinner version of a rammed-earth wall with rebar reinforcement and fiber-mesh to tie everything together. All of the steel was pre-cut and welded in place allowing for adjustments to be made on site and keeping loads light. All the steel was anchored into the ground with 12” footings. A small retaining wall was built with CMU blocks and a French drain was added to help prevent erosion in the walls on the east side. I performed 85% of the labor while the remaining 15% came from assistance of students and friends.

Elevated 3’ from the ground, the bed platform sits above the fireplace and is sheltered on the east side by the chimney. The concrete bed platform and rammed-earth chimney are protected from direct fire but gain thermal heat to passively warm the dweller on colder nights. The soirée patio is a gathering space with three chairs that comfortably accommodate a small group of visitors or just one pensive student needing some quiet time to read or rest.

1. Stone front entry patio
2. Bed with fireplace below
3. Chimney
4. 3” rammed-earth wall typ.
5. Soirée patio
7. Zen garden, crushed granite
8. Stone steps, back entry
9. 3” x 3” steel angle frame typ.
Once the steel-armature was welded and anchored to the ground, it was critical to test the soil and establish the appropriate proportions of earth, concrete, lime, and colorant. Rammed-earth mixes vary depending on the content of the earth available. Because the contents of local earth didn’t have clay or lime, I had to make a variety of mixes and weather-test them for durability. Once I established a formula, I built a small mockup of the wall and tested the construction method and ramming tools, which helped me adjust and alleviate errors on the main walls. I began to fill the walls with the rammed earth material using salvaged 3/4” plywood from local construction waste to build the formwork. Simultaneously, I worked with my original concept sketch and various form finding techniques, seeking to find the most appropriate shape, pattern, and material for the fabric roof-membrane. I also specified the hardware and designed the extensions to the main armature to which the fabric was anchored. Every decision was contemplated, tested, calculated, and adjusted to provide a consistent approach to the design.

<table>
<thead>
<tr>
<th>Material</th>
<th>Purchased</th>
<th>Recycled</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2”x3”x3/4” Steel angle</td>
<td>30 Linear feet</td>
<td>210 Linear feet (88%)</td>
<td>$ 215.00</td>
</tr>
<tr>
<td>1 1/4”x1 1/2” Tubing</td>
<td>40 Linear feet</td>
<td>20 Linear feet (50%)</td>
<td>$ 90.00</td>
</tr>
<tr>
<td>1”x1”x1/8” Steel angle</td>
<td>60 Linear feet</td>
<td>-</td>
<td>$ 45.00</td>
</tr>
<tr>
<td>1/2”x1/4”x1/2” Steel angle</td>
<td>24 Linear feet</td>
<td>-</td>
<td>$ 35.00</td>
</tr>
<tr>
<td>1/4”x1/4” Steel Flat bar</td>
<td>12 Linear feet</td>
<td>-</td>
<td>$ 15.00</td>
</tr>
<tr>
<td>2”x1/4” Steel plate</td>
<td>-</td>
<td>90 Linear feet (100%)</td>
<td>-</td>
</tr>
<tr>
<td>8”x1/4” Steel plate</td>
<td>-</td>
<td>120 Linear feet (100%)</td>
<td>-</td>
</tr>
<tr>
<td>3/8” Rebar</td>
<td>430 Linear Feet</td>
<td>40 Linear feet (9%)</td>
<td>$ 180.00</td>
</tr>
<tr>
<td>8”x8”x16 CMU block</td>
<td>100 units</td>
<td>-</td>
<td>$ 130.00</td>
</tr>
<tr>
<td>Local Earth</td>
<td>-</td>
<td>100 Cubic feet from the property</td>
<td>-</td>
</tr>
<tr>
<td>Local Ground</td>
<td>-</td>
<td>25 Cubic feet from the property</td>
<td>-</td>
</tr>
<tr>
<td>Local Stones</td>
<td>-</td>
<td>100 % Gathered from the property</td>
<td>-</td>
</tr>
<tr>
<td>Cement, Lime, Pigment and Fibermesh</td>
<td>100%</td>
<td>-</td>
<td>$ 360.00</td>
</tr>
<tr>
<td>Synthesis Shade Cloth Commercial 95</td>
<td>1,291 sq. ft.</td>
<td>-</td>
<td>Donation</td>
</tr>
<tr>
<td>Wood for the formwork</td>
<td>-</td>
<td>100% local construction waste</td>
<td>-</td>
</tr>
<tr>
<td>Hardware and Miscellaneous Supplies</td>
<td>90%</td>
<td>10%</td>
<td>$ 925.00</td>
</tr>
</tbody>
</table>

Total: $ 1,995.00
Brittlebush: Design + Build
Sewing an interchangeable roof-membrane

Fabric membrane structures are generally erected under the design + build model because each fabric responds differently and requires on site measurements and adjustments to ensure a quality product. Finding the best shape for the fabric is one of the most challenging parts of the design process. Once the main structure is established, the general shape is known, but it takes further measurements and analysis of the actual structure to ensure a precise fit. This structure was designed to have an interchangeable roof of two types of material, a PVC vinyl for the rainy season and a poly-mesh shade-cloth for the sunny season. Due to limited availability of material, only the shade-cloth roof was cut and sewn. With everything in place, the other roof would be produced very simply in two weeks. After two years, a final product was available to dwell in, contemplate, and study its ability to stand the test of time. Brittlebush has received significant attention from several architecture blogs, three national publications, three international magazines, and one book. “Learning by doing” is an irreplaceable educational model that has improved my ability to see and appreciate the details of my surroundings as I aspire to do more.
Brittlebush: Design + Build
Learning by doing and doing more

Soirée patio with three chairs look at the back entry

Acrylic orb lifting the fabric

Patio with fireplace behind and bed above

View from across the wash
The Coyote Residence was designed for a property located in the lower northern foothills of Santa Fe, New Mexico. As the capital of the state with a population of 76,000 people, there are many challenging regulations that influenced architectural decisions. Santa Fe is located in a high desert mountain climate limited in water, which made it essential to integrate a water collection system into the roof design.

Due to the lack of distant views, a wash running through the property, and the regulations limiting ridge-top construction on the east side of the site, locating the building envelope was a complicated problem. The final decision was to stay on the northwest corner of the property to eliminate the need to build a culvert across the wash, allowing those funds to be used on other areas of the construction cost. This decision also reduced the cost to connect to the utilities and made it easier to integrate passive solar concepts into the design. Some drainage mitigation still needed to be designed into the landscaping and foundation within the drainage easement. Another advantage of placing the home in this location is that the property across the wash remained untouched, providing an intimate view of nature and the changing sky. Owned by the residents, the two acres of land across the wash became a micro-view of the high mountain desert and provide a peaceful retreat for a small stroll.

The greatest challenge of this residence was to provide an integrated connection to nature for the residents and the building while keeping within current building practices. The property is low in the landscape surrounded by the foothills. The House needed to take on that feature by sitting into the hillside on the northwest side, sinking down and away from the road. The site section below describes how local traffic quickly rises above the residence sending most of the vehicle noise over the house.
Coyote Residence: Santa Fe, New Mexico
Integrating knowledge and knowing when and where to look for support

As part of my final design project, I had a goal to reach design development drawings while integrating several of the techniques I had learned in design, rendering, and construction methods and materials. Door and finish schedules, structural calculations, and legal contracts were drafted for this project. To synthesize these various skills it was essential to test my knowledge and know when to ask for assistance or look for reference.

Through this project, I consulted with faculty, students, and friends and brought together their insight and knowledge and sought to articulate my interpretation of their ideas in this cohesive design. Architecture is a process of lifelong learning and application. By discovering and rediscovering how to build and how to question what we build, new ideas emerge. By collaborating with others and initiating dialogue we begin to establish new principles and approaches to the work. This process is similar to working with clients, engineers, the city, and neighbors. Architecture is rarely created by one person and requires a good listener, as well as thinker to develop and deliver ideas that make a difference.
Coyote Residence: Santa Fe, New Mexico
Local and contemporary materials in the high desert

These elevation renderings are intended to give the client a sense of texture, color, and light that is integrated into the design, while the details on the following page are essential to understand the construction methods and materials. Landscaping was also considered by using local species such as the cottonwood commonly found in the lower areas of the foothills.

As the original place of Pueblo and Territorial Style Architecture and one of the oldest cities in the USA, Santa Fe is a rich library of desert vernacular architecture. It is also a challenging context to introduce contemporary ideas and materials because of historic regulations and architectural guidelines. Many current buildings are designed to stylistically mimic adobe architecture but fail to creatively use local materials and resources.

The design of this small 1600 square foot residence called for an investigation into reinterpreting local materials, by using them in different ways. By developing a fresh perspective on local materials, contemporary and vernacular architecture fit together in an integrated palette. Instead of using stucco as the siding on the home I proposed to apply what is locally known as coyote fencing, horizontally. These 1.5” to 2.5” dowels of cedar wood provide a horizontal banding around the home that texturally integrates the structure in with the landscape and the local vernacular. The use of adobe bricks is also integrated and featured in sections of the walls that had less structural demands. The bricks are surrounded by concrete to protect from erosion with the purpose of the contemporary material protecting the local. By blending local and contemporary materials the design stands in the present without forgetting the past.
Coyote Residence: Santa Fe, New Mexico
Wall sections: How to assemble ideas

Commonly used as a fence material, Coyote Fencing was proposed to be applied horizontally as siding.
Coyote Residence: Santa Fe, New Mexico
Integrating the building into the landscape

- Western perspective looking down the stone steps toward the front entrance
- Southern perspective looking into the central patio
- Perspective from the middle of the wash
Thin Shell Concrete: Creating a curved surface with straight lines

This thin-shell design was an exercise in understanding the structural limits of thin shell concrete paraboloids and hyperboloids. Most of these three-dimensional geometric shapes are created with straight lines that result in a curved surface. There are two types of paraboloids: elliptic and hyperbolic. The elliptic paraboloid cannot be made with straight lines, but is formed by taking half of an ellipse and rotating it on its central axis, creating a shape similar to a satellite dish or half an egg, depending on the depth of the ellipse. The hyperbolic-paraboloid is created with straight lines connecting the opposite sides of a quadrilateral shape with each point at a different height, making a shape similar to a Pringles chip or a saddle. A hyperboloid is formed by taking a cylinder and twisting the two ends in opposite directions generating an hourglass shape.

I studied the works of architects and engineers that pioneered the current achievements in thin-shell concrete structures: in particular Felix Candela, Eladio Dieste, Oscar Niemeyer, Eduardo Torroja, Pier Luigi Nervi, Kenzo Tange and Robert Mailart. As an exercise, I designed a thin-shell roof for a small chapel measuring 48 feet wide by 72 feet long. After several small concept sketches, I decided to combine the principles of a gothic pointed arch with a hyperboloid, a concept I had not found in my research. Four hyperboloids converged geometrically, to create a pointed barrel arch.

To conclude this short design exercise, I built a model with thread to understand the physical transformation of straight lines generating curved shapes and produced renderings to place the design in a context. This exercise taught me to think about various combinations of three-dimensional geometries. I began to understand how curved surfaces relate to two-dimensional shapes and the structural advantages and limitations of thin shell concrete. By gaining a deeper understanding of how straight lines create three-dimensional curved surfaces, I began to study membrane structures differently. Instead of seeing curved surfaces with anchoring points, I began to see geometric plains connected by lines.
Fabric Shaping Space: Flexibility and Rigidity

Corporidade (City-body): Dancing with architecture as an art performance

In October 2008 a conference in San Salvador, Bahia, Brazil entitled “Corporidade: Debates on Urban Aesthetics” was organized by the Federal University of Bahia. They initiated a debate in urban aesthetics between the fields of arts and urbanism, intertwining cultural policies and urban areas. The debates intended to discuss how our understanding of the human body, arts, and urban environment affect our behavior and shape the creation of knowledge in several fields, especially the visual arts, dance, architecture, and urbanism.

An artist and I conceived the following project titled Symbiosis. It consisted of a movable installation/urban intervention that explored the relationship between the body (individual and collective) with the built environment. Rectangles of fabric, much like hammocks, were to stretch from and fold around corners of buildings, lamp posts, signs and gates, creating pocket-like organisms to be inhabited by the human body — the performer, the viewer, the passerby. These organisms, white inhabited, would act like second skins, protective elements, and connective tissues, invoking conversations about their symbiotic nature with the built environment. While the social organisms are uninhabited, the interdependency between the “actual body” (city and inhabitants) and the “constructed body” (symbiotic organisms and participants) was emphasized by the disembodied space. The public body is an essential element for the vitality of the built environment.

Symbiosis was proposed as a corporeal experience, a splash of color, a collective experiment pulsating, shifting, and migrating through the streets of Salvador, Bahia. Symbiosis was to be a collaborative project by two multidisciplinary artists, along with local volunteers, participants, and dancers. Symbiosis was an enacted metaphor to examine the urban aesthetic by creating a space where the city’s infrastructure would be emphasized, inviting the attention and analysis of its inhabitants and spectators. The urban landscape would be the content of these installations and would make each experience unique to Salvador, Bahia in its historic and contemporary life. This migratory experiment would take place over the course of two – three days, exploring the areas between the more historic Pelourinho and the newer Federal University of Bahia campus.